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Introduction

*NEW* Overture Version 22 is the first parallel version of Overture.

*NEW* The CG (Composite-Grid) Suite of PDE solvers has been released.

This talk will give an overview of some of the new capabilities including parallel

capabilities:

• cgins : incompressible flow.

• cgcns : compressible flow with adaptive mesh refinement.

• ogen : overlapping grid generation.

• cgmx : Maxwell’s equations.

• cgmp : multi-physics problems (see Kyle Chand’s presentation).

Other notes of interest:

• interactive parallel graphics is working.

• parallel I/O is working (getting around the limitations of HDF5).
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Overture is toolkit for solving partial differential equations on
structured, overlapping and hybrid grids.

Key features:

• provides a high level C++ interface for rapid prototyping of PDE solvers.

• built upon optimized C and fortran kernels.

• provides a library of finite-difference operators: conservative and non-conservative,

2nd, 4th, 6th and 8th order accurate approximations.

• support for moving grids.

• support for block structured adaptive mesh refinement (AMR).

• extensive grid generation capabilities.

• CAD fixup tools (for CAD from IGES files).

• interactive graphics and data base support (now using HDF5).

• command scripts with embedded perl commands.

• PDE solvers built upon Overture include those from the CG suite:

• cgins: incompressible Navier-Stokes with heat transfer.

• cgcns: compressible Navier-Stokes, reactive Euler equations.

• cgmx: time domain Maxwell’s equations solver.

• cgmp: multi-physics solver (e.g. thermal hydraulics)
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Overture supports a high-level C++ interface (but is built
mainly upon Fortran kernels):

Solve ut + aux + buy = ν(uxx + uyy)

CompositeGrid cg; // create a composite grid

getFromADataBaseFile(cg,"myGrid.hdf");

floatCompositeGridFunction u(cg); // create a grid function

u=1.;

CompositeGridOperators op(cg); // operators

u.setOperators(op);

float t=0, dt=.005, a=1., b=1., nu=.1;

for( int step=0; step<100; step++ )

{

u+=dt*( -a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) ); // forward Euler

t+=dt;

u.interpolate();

u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);

u.finishBoundaryConditions();

}
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Cad geometry

Global triangulation

Overlapping grid

Incompressible flow.
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Other Projects Using Overture (items not covered in this talk)

♦ Compressible multiphase flows (Don Schwendeman, RPI)

♦ Compressible multi-material flows and FCT algorithms (Jeff Banks, LLNL)

♦ Compressible axisymmetric flow with swirl (Kyle Chand, LLNL)

♦ Compressible flow/ice-formation (Graeme Leese, Nikos Nikiforakis, U. Cambridge).

♦ Einstein field equations (Philip Blakely, U. Cambridge).

♦ Converging shock waves with obstacles (Veronica Eliasson, Caltech).

♦ Blood flow in veins with obstacles. (Mike Singer, LLNL).

♦ Visco-plastic flows and friction-stir welding (Graeme Thorn, U. of Liverpool).

♦ Flow on the surface of the eye (Kara Maki, U. Delaware).

♦ Elasticity. (Daniel Appëlo, Caltech).
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Cgins: Incompressible Flow

Features:

• 2nd-order and 4th-order accurate incompressible Navier-Stokes† (DNS).

• support for moving rigid-bodies (not parallel yet).

• Heat transfer (Boussinesq approximation).

• semi-implicit (time accurate), pseudo steady-state (efficient line solver), full

implicit (new).

• Visco-plastic model (full-implicit method).

• K-ε model (full-implicit method, in progress).

♦ Implicit systems and the pressure equation can be solved in parallel using

PETSc, Hypre, SuperLU (and other packages available through the PETSc

interface). Still under development is the parallel version of the multigrid solver

Ogmg.

†Reference:
WDH., A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on

Overlapping Grids, J. Comput. Phys, 113, no. 1, (1994) 13–25.
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Incompressible flow computations with cgins.
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Overlapping grid for the filter

Trap-ease wire filter

Spherical clot trapped in the filter

Cone shaped clot Spherical clot trapped near the front

Flow past a blood-clot filter using cgins (Mike Singer, LLNL)
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Incompressible Navier-Stokes: preliminary parallel results
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Left: impulsively started cylinder in an incompressible flow (vorticity). Right: parallel

speedup keeping the problem size fixed (4 Million grid points), on a linux cluster (Xeon

processors). The pressure equation is solved with algebraic multigrid (Hypre).
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Parallel Adaptive Mesh Refinement on Overlapping Grids

♦ AMR: adaptive grids are dynamically created every few time-steps based on an

estimate of the error.

♦ Parallel: Each base grid or refinement grid can be independently distributed

over a set of processors.

♦ Load balancing: the parallel distribution of the grids is determined using a

modified bin-packing algorithm.

Reference:
WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using

Overlapping Grids with Adaptive Mesh Refinement, J. Comp. Phys. 227 (2008).

WDH., D. W. Schwendeman, Moving Overlapping Grids with Adaptive Mesh Refinement for

High-Speed Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
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Distributing Overlapping and AMR grids in Parallel
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Each base grid or refinement grid can be distributed over a contiguous range of

processors. In this example the base grid G1 is distributed over processors [0, 1], the

base grid G2 over processor [4], the refinement grid G3 over processors [3, 4, 5] and the

refinement grid G4 over processors [6, 7].

14



AMR grids for shock diffraction by a quarter sphere

Density and AMR grids for the quarter-sphere problem at t = 0.6 (left) and t = 1.4

(right). (The grid is coarsened by a factor of 4 for illustrative purposes.)

Notes: Euler equations computed with cgcns: two-levels of refinement factor 2, 32

processors, from 6 to 1827 grids, a maximum of 55 million grid points.
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Density on the sphere
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Grid convergence study for shock diffraction by a quarter sphere
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Cgcns parallel AMR example: detonation initiation in a T-shaped pipe

Notes: Reactive-Euler equations computed with cgcns: one level of refinement factor 4,

4930 time steps, 48 processors, from 5 to 682 grids, a maximum of 100 million grid

points (effective resolution of 400 million).
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Grid convergence study for a detonation in a T-pipe
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Estimating Convergence Rates

Define the volume-weighted discrete Lp-norm of a grid function Ui as

‖Ui‖p =
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We assume to leading order that the discrete solution U m
i at grid spacing hm satisfies

U
m
i − u(xm

i , t) ≈ C
m
i h

µ
m,

where u(x, t) is the exact solution.

Then

‖Um
i −Rm

n U
n
i ‖p ≈ C|hµ

m − h
µ
n|,

where Rm
n is a fine to coarse restriction operator.

Result: Given three solutions we can estimate the convergence rate µ and the error.
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Shock Diffraction by a Quarter-Sphere

t = 1.0 t = 1.8

Grid hm Em
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q 1/80 6.1e−3 4.6e−2 1.1e−2 5.3e−2

G
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q 1/160 2.5e−3 2.4e−2 5.4e−3 2.9e−2

rate, µ 1.30 0.95 1.06 0.86

Estimated L1 and L2 errors in the density, Em
1 and Em

2 , respectively, and convergence rates µ

at t = 1.0 and t = 1.8.

Detonation in a T-Pipe

t = 2.0 t = 2.8

hm Em
1 Em

2 Em
1 Em

2

1/120 4.0e−3 3.0e−2 3.8e−2 2.6e−1
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1/240 9.8e−4 7.1e−3 1.2e−2 1.2e−1

rate, µ 2.04 2.07 1.65 1.09

Estimated L1 and L2 errors in the density, Em
1 and Em

2 , respectively, and convergence rates µ

at t = 2.0 and t = 2.8.
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Modeling Deforming Geometry with Overlapping Grids

surface deforms over time.

Streamlines of a compressible flow around a deforming boundary.
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Deforming Body Applications

Cylinder deforms

Compressible flow past a deforming cylinder. The surface of the cylinder deforms

over time to mimic the growth of ice. Only a subset of the grid lines are shown.
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Overlapping Grid Generation

The two main steps in the grid generation process are:

♦ Build individual component grids (box, sphere, cylinder, NURBS, marching on

a CAD or triangulated surface, body-of-revolution, swept-surface, TFI, ...)

♦ Construct the overlapping grid: remove un-needed points (hole-cutting) and

determine interpolation points between the grids.
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Sample 3D overlapping grids
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Sample hybrid grids built by Ugen
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Ogen: Overlapping Grid Generator

The parallel version of Ogen is now under development (it works in many cases).

Brief description of the algorithm:

• grids are ordered by priority; interpolation is preferred from higher priority grids.

• physical boundaries automatically cut holes in nearby grids.

• robust algorithm with backup rules and interactive error diagnostics.

Brief description of capabilities:

• arbitrary stencil widths supported (single fringe, double fringe, triple fringe ...)

• arbitrary order of interpolation (linear, quadratic, cubic,...)

• optimized for common analytic mappings ( spheres, cylinders, NURBS).

• optimized for Cartesian grids – e.g. grid points are not stored when computing the

overlapping grid.

• script files with embedded perl commands for ”automatic” parameterized grid

generation.
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Ogen parallel example: A grid for a multi-domain simulation

♦ A test grid for thermal hydraulics problems: fluid flowing around heated metal rods.

♦ The parameterized ogen script rodArray.cmd can be used to automatically generate

a grid for an array of Nx by Ny rods.

♦ Example: ogen noplot rodArray -factor=4 -nCylx=2 -nCyly=2 -interp=e

♦ Example: mpirun -np 4 ogen noplot rodArray -nCylx=4 -nCyly=4 -interp=e
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Ogen: Very Preliminary Parallel Speedup - Strong Scaling
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Parallel speedup, rodArray2x2ye14, 125 Million points, Zeus Linux cluster.
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Ogen: Preliminary Parallel Grid Generation Statistics

Grid Np points (M) cpu (s) reals/point points/s/Np

rodArray2x2ye8 1 24 215 10.5 1.1e5

rodArray2x2ye10 1 47 391 9.9 1.2e5

rodArray2x2ye12 2 80 341 10.3 1.2e5

rodArray2x2ye14 2 125 522 10.0 1.2e5

rodArray2x2ye14 32 125 51 15.4 .77e5

Some grid generation statistics for various grids. Total number of grid points in

millions, total time to generate, memory usage measured as reals-per-grid-point and

time to generate measured in points-per-second-per-processor
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Cgmx: Solving the Time Domain Maxwell’s Equations

Maxwell’s equations are solved in second-order form:

εµ ∂
2
t E = ∆E + ∇

“

∇ ln ε · E
”

+ ∇ ln µ ×
“

∇× E

”

−∇(
1

ε
ρ) − µ∂tJ,

Advantages of the second-order form:

• There is no need to use a staggered grid since the operator ∆ is elliptic.

• One can solve for E alone (and compute H as a post-processing step).

Features: ♦ 2D, 3D, fourth-order accurate ♦ Efficient time-stepping with the

modified-equation approach, allowing a large (cfl=1) time step. ♦ New high-order

accurate symmetric difference approximations. ♦ High-order-accurate centered

boundary and interface conditions. ♦ The scheme is both high-order accurate and

nearly as efficient as a Cartesian grid method.

Reference: WDH., A High-Order Accurate Parallel Solver for Maxwell’s Equations on

Overlapping Grids, SIAM J. Scientific Computing, 28, no. 5, (2006), pp. 1730-1765.
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Parallel scaling of the Maxwell solver
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2D scattering from a cylinder

Fixed size problem, 3.8 million grid-points
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An overlapping grid for the HOM coupler and the computed solution (Ex at

t = 2) for a Gaussian pulse initial condition.
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Ex, t = 10

Ex, t = 30

Ex, t = 50

A charge pulse moving through the 3d ILC cavity with no couplers (on a fairly coarse

grid, 2nd-order accuracy). A coarsened version of the grid is shown at the bottom.
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